Notable Accumulator-based Computers
Most of IBM's early binary "scientific" computers, beginning with the vacuum tube IBM 701 in 1952, used a single 36-bit accumulator, along with a separate multiplier/quotient register to handle operations with longer results. The IBM 650, a decimal machine, had one 10 digit accumulator; the IBM 7070, a later, transistorized decimal machine had three accumulators.
The 12-bit PDP-8 was one of the first minicomputers to use accumulators, and inspired many later machines. The PDP-8 had but one accumulator. The HP 2100 and Data General Nova had 2 and 4 accumulators. The Nova was created when this follow-on to the PDP-8 was rejected in favor of what would become the PDP-11. The Nova provided four accumulators, AC0-AC3, although AC2 and AC3 could also be used to provide offset addresses, tending towards more generality of usage for the registers. The PDP-11 introduced a more contemporary model of general registers, numbered R0-R7 or more, adopted by most later CISC and RISC machines.
Early 4-bit and 8-bit microprocessors such as the 4004, 8008 and numerous others, typically had single accumulators. The 8051 microcontroller has two, a primary accumulator and a secondary accumulator, where the second is used by instructions only when multiplying (MUL AB) or dividing (DIV AB); the former splits the 16-bit result between the two 8-bit accumulators, whereas the latter stores the quotient on the primary accumulator A and the remainder in the secondary accumulator B. As a direct descendent of the 8008, the 8080, and the 8086, the modern ubiquitous Intel x86 processors still uses the primary accumulator EAX and the secondary accumulator EDX for multiplication and division of large numbers. For instance, MUL ECX will multiply the 32-bit registers ECX and EAX and split the 64-bit result between EAX and EDX. However, MUL and DIV are special cases, other arithmetic-logical instructions (ADD, SUB, CMP, AND, OR, XOR, TEST) may specify any of the eight registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI as the accumulator (i.e. left operand and destination); x86 is thus a fairly general register architecture, despite being based on an accumulator model. The 64-bit extension of x86, x86-64, has been further generalized to 14 instead of 6 general registers.
Read more about this topic: Accumulator (computing)
Famous quotes containing the word notable:
“a notable prince that was called King John;
And he ruled England with main and with might,
For he did great wrong, and maintained little right.”
—Unknown. King John and the Abbot of Canterbury (l. 24)