Analytic Models of Sub-Eddington Accretion Discs (thin Discs, ADAFs)
Accretion disc QPO's: Quasi-Periodic Oscillations happen in many accretion discs, with their periods appearing to scale as the inverse of the mass of the central object. Why do these oscillations exist? Why are there sometimes overtones, and why do these appear at different frequency ratios in different objects? |
When the accretion rate is sub-Eddington and the opacity very high, the standard thin accretion disc is formed. It is geometrically thin in the vertical direction (has a disc-like shape), and is made of a relatively cold gas, with a negligible radiation pressure. The gas goes down on very tight spirals, resembling almost circular, almost free (Keplerian) orbits. Thin discs are relatively luminous and they have thermal electromagnetic spectra, i.e. not much different from that of a sum of black bodies. Radiative cooling is very efficient in thin discs. The classic 1974 work by Shakura and Sunyaev on thin accretion discs is one of the most often quoted papers in modern astrophysics. Thin discs have been independently worked out by Lynden-Bell, Pringle and Rees. Pringle contributed in the past thirty years many key results to accretion disc theory, and wrote the classic 1981 review that for many years was the main source of information about accretion discs, and is still very useful today.
When the accretion rate is sub-Eddington and the opacity very low, an ADAF is formed. This type of accretion disc was predicted in 1977 by Ichimaru. Although Ichimaru's paper was largely ignored, some elements of the ADAF model were present in the influential 1982 ion-tori paper by Rees, Phinney, Begelman and Blandford.
ADAFs started to be intensely studied by many authors only after their rediscovery in the mid 1990 by Narayan and Yi, and independently by Abramowicz, Chen, Kato, Lasota (who coined the name ADAF), and Regev. Most important contributions to astrophysical applications of ADAFs have been made by Narayan and his collaborators. ADAFs are cooled by advection (heat captured in matter) rather than by radiation. They are very radiatively inefficient, geometrically extended, similar in shape to a sphere (or a "corona") rather than a disc, and very hot (close to the virial temperature). Because of their low efficiency, ADAFs are much less luminous than the Shakura-Sunyaev thin discs. ADAFs emit a power-law, non-thermal radiation, often with a strong Compton component.
Read more about this topic: Accretion Disc
Famous quotes containing the words analytic, models and/or accretion:
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.”
—Woodrow Wilson (18561924)
“It doesnt matter that your painting is small. Kopecks are also small, but when a lot are put together they make a ruble. Each painting displayed in a gallery and each good book that makes it into a library, no matter how small they may be, serves a great cause: accretion of the national wealth.”
—Anton Pavlovich Chekhov (18601904)