Abstract Regular Polytopes
Formally, an abstract polytope is defined to be "regular" if its automorphism group acts transitively on the set of its flags. In particular, any two k-faces F, G of an n-polytope are "the same", i.e. that there is an automorphism which maps F to G. When an abstract polytope is regular, its automorphism group is isomorphic to a quotient of a Coxeter group.
All polytopes of rank ≤ 2 are regular. The most famous regular polyhedra are the five Platonic solids. The hemicube (shown) is also regular.
Informally, for each rank k, this means that there is no way to distinguish any k-face from any other - the faces must be identical, and must have identical neighbors, and so forth. For example, a cube is regular because all the faces are squares, each square's vertices are attached to three squares, and each of these squares is attached to identical arrangements of other faces, edges and vertices, and so on.
This condition alone is sufficient to ensure that any regular abstract polytope has isomorphic regular (n−1)-faces and isomorphic regular vertex figures.
This is a weaker condition than regularity for traditional polytopes, in that it refers to the (combinatorial) automorphism group, not the (geometric) symmetry group. For example, any abstract polygon is regular, since angles, edge-lengths, edge curvature, skewness etc. don't exist for abstract polytopes.
There are several other weaker concepts, some not yet fully standardised, such as semi-regular, quasi-regular, uniform, chiral, and Archimedean that apply to polytopes that have some, but not all of their faces equivalent in each rank.
Read more about this topic: Abstract Polytope
Famous quotes containing the words abstract and/or regular:
“Virtue, my pet, is an abstract idea, varying in its manifestations with the surroundings. Virtue in Provence, in Constantinople, in London, and in Paris bears very different fruit, but is none the less virtue.”
—Honoré De Balzac (17991850)
“This is the frost coming out of the ground; this is Spring. It precedes the green and flowery spring, as mythology precedes regular poetry. I know of nothing more purgative of winter fumes and indigestions. It convinces me that Earth is still in her swaddling-clothes, and stretches forth baby fingers on every side.”
—Henry David Thoreau (18171862)