Very Low Temperatures
The average temperature of the universe today is approximately 2.73 kelvins, based on measurements of cosmic microwave background radiation.
Absolute zero cannot be achieved, although it is possible to reach temperatures close to it through the use of cryocoolers, dilution refrigerators, and nuclear adiabatic demagnetization. The use of laser cooling has produced temperatures less than a billionth of a kelvin. At very low temperatures in the vicinity of absolute zero, matter exhibits many unusual properties, including superconductivity, superfluidity, and Bose–Einstein condensation. To study such phenomena, scientists have worked to obtain even lower temperatures.
- The current world record was set in 1999 at 100 picokelvins (pK), or 0.000 000 000 1 of a kelvin, by cooling the nuclear spins in a piece of rhodium metal.
- In November 2000, nuclear spin temperatures below 100 pK were reported for an experiment at the Helsinki University of Technology's Low Temperature Lab. However, this was the temperature of one particular degree of freedom – a quantum property called nuclear spin – not the overall average thermodynamic temperature for all possible degrees in freedom.
- In February 2003, the Boomerang Nebula was observed to have been releasing gases at a speed of 500,000 km/h (over 300,000 mph) for the last 1,500 years. This has cooled it down to approximately 1 K, as deduced by astronomical observation, which is the lowest natural temperature ever recorded.
- In May 2005, the European Space Agency proposed research in space to achieve femto-kelvin temperatures.
- In May 2006, the Institute of Quantum Optics at the University of Hanover gave details of technologies and benefits of femto-kelvin research in space.
Read more about this topic: Absolute Zero
Related Phrases
Related Words