In mathematics, the absolute value (or modulus) | a | of a real number a is the non-negative value of a without regard to its sign. Namely, | a | = a for a positive a, | a | = −a for a negative a, and | 0 | = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.
Generalizations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts.
Read more about Absolute Value: Terminology and Notation, Absolute Value Function, Distance
Famous quotes containing the words absolute value and/or absolute:
“One may almost doubt if the wisest man has learned anything of absolute value by living.”
—Henry David Thoreau (18171862)
“The teacher must derive not only the capacity, but the desire, to observe natural phenomena. In our system, she must become a passive, much more than an active, influence, and her passivity shall be composed of anxious scientific curiosity and of absolute respect for the phenomenon which she wishes to observe. The teacher must understand and feel her position of observer: the activity must lie in the phenomenon.”
—Maria Montessori (18701952)