Absolute Infinite - The Burali-Forti Paradox

The Burali-Forti Paradox

The idea that the collection of all ordinal numbers cannot logically exist seems paradoxical to many. This is related to Cesare Burali-Forti's "paradox" that there can be no greatest ordinal number. All of these problems can be traced back to the idea that, for every property that can be logically defined, there exists a set of all objects that have that property. However, as in Cantor's argument (above), this idea leads to difficulties.

More generally, as noted by A.W. Moore, there can be no end to the process of set formation, and thus no such thing as the totality of all sets, or the set hierarchy. Any such totality would itself have to be a set, thus lying somewhere within the hierarchy and thus failing to contain every set.

A standard solution to this problem is found in Zermelo's set theory, which does not allow the unrestricted formation of sets from arbitrary properties. Rather, we may form the set of all objects that have a given property and lie in some given set (Zermelo's Axiom of Separation). This allows for the formation of sets based on properties, in a limited sense, while (hopefully) preserving the consistency of the theory.

While this solves the logical problem, one could argue that the philosophical problem remains. It seems natural that a set of individuals ought to exist, so long as the individuals exist. Indeed, naive set theory might be said to be based on this notion. Although Zermelo's fix allows a class to describe arbitrary (possibly "large") entities, these predicates of the meta-language may have no formal existence (i.e., as a set) within the theory. For example, the class of all sets would be a proper class. This is philosophically unsatisfying to some and has motivated additional work in set theory and other methods of formalizing the foundations of mathematics such as New Foundations by Willard Van Orman Quine.

Read more about this topic:  Absolute Infinite

Famous quotes containing the word paradox:

    A good aphorism is too hard for the teeth of time and is not eaten up by all the centuries, even though it serves as food for every age: hence it is the greatest paradox in literature, the imperishable in the midst of change, the nourishment which—like salt—is always prized, but which never loses its savor as salt does.
    Friedrich Nietzsche (1844–1900)