Relation To Other Mathematical Topics
Many large abelian groups possess a natural topology, which turns them into topological groups.
The collection of all abelian groups, together with the homomorphisms between them, forms the category Ab, the prototype of an abelian category.
Nearly all well-known algebraic structures other than Boolean algebras, are undecidable. Hence it is surprising that Tarski's student Szmielew (1955) proved that the first order theory of abelian groups, unlike its nonabelian counterpart, is decidable. This decidability, plus the fundamental theorem of finite abelian groups described above, highlight some of the successes in abelian group theory, but there are still many areas of current research:
- Amongst torsion-free abelian groups of finite rank, only the finitely generated case and the rank 1 case are well understood;
- There are many unsolved problems in the theory of infinite-rank torsion-free abelian groups;
- While countable torsion abelian groups are well understood through simple presentations and Ulm invariants, the case of countable mixed groups is much less mature.
- Many mild extensions of the first order theory of abelian groups are known to be undecidable.
- Finite abelian groups remain a topic of research in computational group theory.
Moreover, abelian groups of infinite order lead, quite surprisingly, to deep questions about the set theory commonly assumed to underlie all of mathematics. Take the Whitehead problem: are all Whitehead groups of infinite order also free abelian groups? In the 1970s, Saharon Shelah proved that the Whitehead problem is:
- Undecidable in ZFC, the conventional axiomatic set theory from which nearly all of present day mathematics can be derived. The Whitehead problem is also the first question in ordinary mathematics proved undecidable in ZFC;
- Undecidable even if ZFC is augmented by taking the generalized continuum hypothesis as an axiom;
- Decidable if ZFC is augmented with the axiom of constructibility (see statements true in L).
Read more about this topic: Abelian Group
Famous quotes containing the words relation to, relation and/or mathematical:
“You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.”
—Angela Carter (19401992)
“There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.”
—Ralph Waldo Emerson (18031882)
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)