Abelian Group - Definition

Definition

An abelian group is a set, A, together with an operation "•" that combines any two elements a and b to form another element denoted ab. The symbol "•" is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:

Closure
For all a, b in A, the result of the operation ab is also in A.
Associativity
For all a, b and c in A, the equation (ab) • c = a • (bc) holds.
Identity element
There exists an element e in A, such that for all elements a in A, the equation ea = ae = a holds.
Inverse element
For each a in A, there exists an element b in A such that ab = ba = e, where e is the identity element.
Commutativity
For all a, b in A, ab = ba.

More compactly, an abelian group is a commutative group. A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".

Read more about this topic:  Abelian Group

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)