Definition
An abelian group is a set, A, together with an operation "•" that combines any two elements a and b to form another element denoted a • b. The symbol "•" is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:
- Closure
- For all a, b in A, the result of the operation a • b is also in A.
- Associativity
- For all a, b and c in A, the equation (a • b) • c = a • (b • c) holds.
- Identity element
- There exists an element e in A, such that for all elements a in A, the equation e • a = a • e = a holds.
- Inverse element
- For each a in A, there exists an element b in A such that a • b = b • a = e, where e is the identity element.
- Commutativity
- For all a, b in A, a • b = b • a.
More compactly, an abelian group is a commutative group. A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".
Read more about this topic: Abelian Group
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)