Definition
An abelian group is a set, A, together with an operation "•" that combines any two elements a and b to form another element denoted a • b. The symbol "•" is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:
- Closure
- For all a, b in A, the result of the operation a • b is also in A.
- Associativity
- For all a, b and c in A, the equation (a • b) • c = a • (b • c) holds.
- Identity element
- There exists an element e in A, such that for all elements a in A, the equation e • a = a • e = a holds.
- Inverse element
- For each a in A, there exists an element b in A such that a • b = b • a = e, where e is the identity element.
- Commutativity
- For all a, b in A, a • b = b • a.
More compactly, an abelian group is a commutative group. A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".
Read more about this topic: Abelian Group
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)