abc Conjecture - Examples of Triples With Small Radical

Examples of Triples With Small Radical

The condition that ε > 0 is necessary for the truth of the conjecture, as there exist infinitely many triples a, b, c with rad(abc) < c. For instance, such a triple may be taken as

a = 1
b = 26n − 1
c = 26n

As a and c together contribute only a factor of two to the radical, while b is divisible by 9, rad(abc) < 2c/3 for these examples. By replacing the exponent 6n by other exponents forcing b to have larger square factors, the ratio between the radical and c may be made arbitrarily small. Specifically, replacing 6n by p(p-1)n for an arbitrary prime p will make b divisible by p2, because 2p(p-1) ≡ 1 (mod p2) and 2p(p-1) - 1 will be a factor of b.

A list of the highest quality triples (triples with a particularly small radical relative to c) is given below; the highest quality of these, with quality 1.6299, was found by Eric Reyssat (Lando & Zvonkin 2004, p. 137):

a = 2
b = 310 109 = 6,436,341
c = 235 = 6,436,343
rad(abc) = 15042

Read more about this topic:  abc Conjecture

Famous quotes containing the words examples of, examples, small and/or radical:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    Time upholds or overturns
    The many, tight, and small concerns.
    Gwendolyn Brooks (b. 1917)

    If in the opinion of the Tsars authors were to be the servants of the state, in the opinion of the radical critics writers were to be the servants of the masses. The two lines of thought were bound to meet and join forces when at last, in our times, a new kind of regime the synthesis of a Hegelian triad, combined the idea of the masses with the idea of the state.
    Vladimir Nabokov (1899–1977)