Examples of Triples With Small Radical
The condition that ε > 0 is necessary for the truth of the conjecture, as there exist infinitely many triples a, b, c with rad(abc) < c. For instance, such a triple may be taken as
- a = 1
- b = 26n − 1
- c = 26n
As a and c together contribute only a factor of two to the radical, while b is divisible by 9, rad(abc) < 2c/3 for these examples. By replacing the exponent 6n by other exponents forcing b to have larger square factors, the ratio between the radical and c may be made arbitrarily small. Specifically, replacing 6n by p(p-1)n for an arbitrary prime p will make b divisible by p2, because 2p(p-1) ≡ 1 (mod p2) and 2p(p-1) - 1 will be a factor of b.
A list of the highest quality triples (triples with a particularly small radical relative to c) is given below; the highest quality of these, with quality 1.6299, was found by Eric Reyssat (Lando & Zvonkin 2004, p. 137):
- a = 2
- b = 310 109 = 6,436,341
- c = 235 = 6,436,343
- rad(abc) = 15042
Read more about this topic: abc Conjecture
Famous quotes containing the words examples of, examples, small and/or radical:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“I would rather be kept alive in the efficient if cold altruism of a large hospital than expire in a gush of warm sympathy in a small one.”
—Aneurin Bevan (18971960)
“If in the opinion of the Tsars authors were to be the servants of the state, in the opinion of the radical critics writers were to be the servants of the masses. The two lines of thought were bound to meet and join forces when at last, in our times, a new kind of regime the synthesis of a Hegelian triad, combined the idea of the masses with the idea of the state.”
—Vladimir Nabokov (18991977)