abc Conjecture - Examples of Triples With Small Radical

Examples of Triples With Small Radical

The condition that ε > 0 is necessary for the truth of the conjecture, as there exist infinitely many triples a, b, c with rad(abc) < c. For instance, such a triple may be taken as

a = 1
b = 26n − 1
c = 26n

As a and c together contribute only a factor of two to the radical, while b is divisible by 9, rad(abc) < 2c/3 for these examples. By replacing the exponent 6n by other exponents forcing b to have larger square factors, the ratio between the radical and c may be made arbitrarily small. Specifically, replacing 6n by p(p-1)n for an arbitrary prime p will make b divisible by p2, because 2p(p-1) ≡ 1 (mod p2) and 2p(p-1) - 1 will be a factor of b.

A list of the highest quality triples (triples with a particularly small radical relative to c) is given below; the highest quality of these, with quality 1.6299, was found by Eric Reyssat (Lando & Zvonkin 2004, p. 137):

a = 2
b = 310 109 = 6,436,341
c = 235 = 6,436,343
rad(abc) = 15042

Read more about this topic:  abc Conjecture

Famous quotes containing the words examples of, examples, small and/or radical:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    A pedestal is as much a prison as any other small space.
    Anonymous Woman (c. mid–1800s)

    Whoever undertakes to create soon finds himself engaged in creating himself. Self-transformation and the transformation of others have constituted the radical interest of our century, whether in painting, psychiatry, or political action.
    Harold Rosenberg (1906–1978)