9-j Symbol - Orthogonality Relation

Orthogonality Relation

The 9-j symbols satisfy this orthogonality relation:

 \sum_{j_7 j_8} (2j_7+1)(2j_8+1) \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} \begin{Bmatrix} j_1 & j_2 & j_3'\\ j_4 & j_5 & j_6'\\ j_7 & j_8 & j_9 \end{Bmatrix} = \frac{\delta_{j_3j_3'}\delta_{j_6j_6'} \{j_1j_2j_3\} \{j_4j_5j_6\} \{j_3j_6j_9\}} {(2j_3+1)(2j_6+1)}.

The symbol (called the triangular delta) is equal to one if the triad satisfies the triangular conditions and zero otherwise.

Read more about this topic:  9-j Symbol

Famous quotes containing the word relation:

    We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.
    —D.H. (David Herbert)