In Mathematics
8 is a composite number, its proper divisors being 1, 2, and 4. It is twice 4 or four times 2. Eight is a power of two, being (two cubed), and is the first number of the form, p being an integer greater than 1. It has an aliquot sum of 7 in the 4 member aliquot sequence (8,7,1,0) being the first member of 7-aliquot tree. It is symbolized by the Arabic numeral (figure)
All powers of 2 ;, have an aliquot sum of one less than themselves.
A number is divisible by 8 if its last 3 digits are also divisible by 8.
Eight is the first number to be the aliquot sum of two numbers other than itself; the discrete biprime 10, and the square number 49.
8 is the base of the octal number system, which is mostly used with computers. In octal, one digit represents 3 bits. In modern computers, a byte is a grouping of eight bits, also called an octet.
The number 8 is a Fibonacci number, being 3 plus 5. The next Fibonacci number is 13. 8 is the only positive Fibonacci number, aside from 1, that is a perfect cube.
8 is the order of the smallest non-abelian group all of whose subgroups are normal.
8 and 9 form a Ruth–Aaron pair under the second definition in which repeated prime factors are counted as often as they occur.
A polygon with eight sides is an octagon. Figurate numbers representing octagons (including eight) are called octagonal numbers. A polyhedron with eight faces is an octahedron. A cuboctahedron has as faces six equal squares and eight equal regular triangles.
A cube has eight vertices.
Sphenic numbers always have exactly eight divisors.
8 is the dimension of the octonions and is the highest possible dimension of a normed division algebra.
The number 8 is involved with a number of interesting mathematical phenomena related to the notion of Bott periodicity. For example if is the direct limit of the inclusions of real orthogonal groups then . Clifford algebras also display a periodicity of 8. For example the algebra is isomorphic to the algebra of 16 by 16 matrices with entries in . We also see a period of 8 in the K-theory of spheres and in the representation theory of the rotation groups, the latter giving rise to the 8 by 8 spinorial chessboard. All of these properties are closely related to the properties of the octonions.
The lowest dimensional even unimodular lattice is the 8-dimensional E8 lattice. Even positive definite unimodular lattice exist only in dimensions divisible by 8.
A figure 8 is the common name of a geometric shape, often used in the context of sports, such as skating. Figure-eight turns of a rope or cable around a cleat, pin, or bitt are used to belay something.
Read more about this topic: 8 (number)
Famous quotes containing the word mathematics:
“Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we dont happen to have all the data. In mathematics we have all the data ... and yet we dont understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.”
—Simone Weil (19091943)
“Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.”
—Walter Reisch (19031963)