2,3-Bisphosphoglyceric Acid - Metabolism

Metabolism

2,3-BPG is formed from 1,3-BPG by the enzyme 2,3-BPG mutase. It can then be broken down by 2,3-BPG phosphatase to form 3-phosphoglycerate. Its synthesis and breakdown are, therefore, a way around a step of glycolysis, with the net expense of one ATP per molecule of 2,3-BPG generated as the high-energy carboxylic acid-phosphate mixed anhydride bond is cleaved by bisphosphoglycerate mutase.

The normal glycolytic pathway generates 1,3-BPG, which may be dephosphorylated by phosphoglycerate kinase (PGK), generating ATP, or it may be shunted into the Luebering-Rapapport pathway, where bisphosphoglycerate mutase catalyzes the transfer of a phosphoryl group from C1 to C2 of 1,3-BPG, giving 2,3-BPG. 2,3-BPG, the most concentrated organophosphate in the erythrocyte, forms 3-PG by the action of bisphosphoglycerate phosphatase. The concentration of 2,3-BPG varies inversely with the pH, which is inhibitory to catalytic action of bisphosphoglyceromutase.

There is a delicate balance between the need to generate ATP to support energy requirements for cell metabolism and the need to maintain appropriate oxygenation/deoxygenation status of hemoglobin. This balance is maintained by isomerisation of 1,3-BPG to 2,3-BPG, which enhances the deoxygenation of hemoglobin. Low pH inhibits the activity of biphosphoglyceromutase and activates bisphosphoglyerate phosphatase, which favors generation of ATP.

Read more about this topic:  2,3-Bisphosphoglyceric Acid

Famous quotes containing the word metabolism:

    He’s got a fifteen percent metabolism with an overactive thyroid and a glandular affectation of about three percent. With a one percent mentality. He’s what we designate as the Crummy Moronic type.
    Robert Pirosh, U.S. screenwriter, George Seaton, George Oppenheimer, and Sam Wood. Dr. Hugo Z. Hackenbush (Groucho Marx)